Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Clin Med ; 12(9)2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2314979

ABSTRACT

BACKGROUND: Genesis and the prognostic value of olfactory dysfunction (OD) in COVID-19 remain partially described. The objective of our study was to characterize OD during SARS-CoV-2 infection and to examine whether testing of OD may be a useful tool in clinical practice in order to early identify patients with SARS-CoV-2 infection. METHODS: Olfactory function assessment was objectively carried out using the u-Smell-it® test. In a cross-sectional study part, we evaluated this test in a control cohort of SARS-CoV-2 negative tested patients, who attended the University Hospital Frankfurt between May 2021 and March 2022. In a second longitudinal study part, sensitivity and specificity of OD was evaluated as a diagnostic marker of a SARS-CoV-2 infection in Frankfurt am Main, Germany in SARS-CoV-2 infected patients and their close contacts. RESULTS: Among 494 SARS-CoV-2 negative tested patients, OD was detected in 45.7% and was found to be significantly associated with the male gender (p < 0.001), higher age (p < 0.001), cardiovascular and pulmonary comorbidities (p < 0.001; p = 0.03). Among 90 COVID-19 positive patients, OD was found in 65.6% and was significantly associated with male gender and positive smoking status (p = 0.04 each). Prevalence and severity of OD were significantly increased in infections with the Delta variant (B.1.617.2) compared to those with the Omicron variant (BA.1.1.529). Diagnostic sensitivity and specificity of OD for diagnosis of SARS-CoV-2 infection were 69% and 64%, respectively. CONCLUSION: OD is common in COVID-19 negative and positive tested patients with significantly different prevalence rates observed between different variants. Diagnostic accuracy of OD is not high enough to implement olfactory testing as a tool in diagnostic routine to early identify patients with a SARS-CoV-2 infection.

2.
Mol Cell Proteomics ; 22(5): 100537, 2023 05.
Article in English | MEDLINE | ID: covidwho-2272028

ABSTRACT

The ancestral SARS-CoV-2 strain that initiated the Covid-19 pandemic at the end of 2019 has rapidly mutated into multiple variants of concern with variable pathogenicity and increasing immune escape strategies. However, differences in host cellular antiviral responses upon infection with SARS-CoV-2 variants remain elusive. Leveraging whole-cell proteomics, we determined host signaling pathways that are differentially modulated upon infection with the clinical isolates of the ancestral SARS-CoV-2 B.1 and the variants of concern Delta and Omicron BA.1. Our findings illustrate alterations in the global host proteome landscape upon infection with SARS-CoV-2 variants and the resulting host immune responses. Additionally, viral proteome kinetics reveal declining levels of viral protein expression during Omicron BA.1 infection when compared to ancestral B.1 and Delta variants, consistent with its reduced replication rates. Moreover, molecular assays reveal deferral activation of specific host antiviral signaling upon Omicron BA.1 and BA.2 infections. Our study provides an overview of host proteome profile of multiple SARS-CoV-2 variants and brings forth a better understanding of the instigation of key immune signaling pathways causative for the differential pathogenicity of SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Proteome , Pandemics , Antiviral Agents , Antibodies, Neutralizing
3.
Int J Infect Dis ; 128: 166-175, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2232009

ABSTRACT

OBJECTIVES: Regarding reactogenicity and immunogenicity, heterologous COVID-19 vaccination regimens are considered as an alternative to conventional immunization schemes. METHODS: Individuals receiving either heterologous (ChAdOx1-S [AstraZeneca, Cambridge, UK]/BNT162b2 [Pfizer-BioNTech, Mainz, Germany]; n = 306) or homologous (messenger RNA [mRNA]-1273 [Moderna, Cambridge, Massachusetts, USA]; n = 139) vaccination were asked to participate when receiving their second dose. Reactogenicity was assessed after 1 month, immunogenicity after 1, 3, and/or 6 months, including a third dose, through SARS-CoV-2 antispike immunoglobulin G, surrogate virus neutralization test, and a plaque reduction neutralization test against the Delta (B.1.167.2) and Omicron (B.1.1.529; BA.1) variants of concern. RESULTS: The overall reactogenicity was lower after heterologous vaccination. In both cohorts, SARS-CoV-2 antispike immunoglobulin G concentrations waned over time with the heterologous vaccination demonstrating higher neutralizing activity than homologous mRNA vaccination after 3 months to low neutralizing levels in the Delta plaque reduction neutralization test after 6 months. At this point, 3.2% of the heterologous and 11.4% of the homologous cohort yielded low neutralizing activity against Omicron. After a third dose of an mRNA vaccine, ≥99% of vaccinees demonstrated positive neutralizing activity against Delta. Depending on the vaccination scheme and against Omicron, 60% to 87.5% of vaccinees demonstrated positive neutralizing activity. CONCLUSION: ChAdOx1-S/BNT162b2 vaccination demonstrated an acceptable reactogenicity and immunogenicity profile. A third dose of an mRNA vaccine is necessary to maintain neutralizing activity against SARS-CoV-2. However, variants of concern-adapted versions of the vaccines would be desirable.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , COVID-19 Vaccines , Prospective Studies , SARS-CoV-2 , Vaccination , Immunization , ChAdOx1 nCoV-19 , RNA, Messenger , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
4.
Sci Immunol ; : eade9888, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2193420

ABSTRACT

The SARS-CoV-2 Omicron variant and its sublineages show pronounced viral escape from neutralizing antibodies elicited by vaccination or prior SARS-CoV-2 variant infection owing to over 30 amino acid alterations within the spike (S) glycoprotein. Breakthrough infection of vaccinated individuals with Omicron sublineages BA.1 and BA.2 is associated with distinct patterns of cross-neutralizing activity against SARS-CoV-2 variants of concern (VOCs). In continuation of our previous work, we characterized the effect of Omicron BA.4/BA.5 S glycoprotein exposure on the neutralizing antibody response upon breakthrough infection in vaccinated individuals and upon variant-adapted booster vaccination in mice. We found that immune sera from triple mRNA-vaccinated individuals with subsequent breakthrough infection during the Omicron BA.4/BA.5 wave showed cross-neutralizing activity against previous Omicron variants BA.1, BA.2, BA.2.12.1, and BA.4/BA.5 itself. Administration of a prototypic BA.4/BA.5-adapted mRNA booster vaccine to mice following SARS-CoV-2 wild-type strain-based primary immunization is associated with broader cross-neutralizing activity than a BA.1-adapted booster. While the Omicron BA-1-adapted mRNA vaccine in a bivalent format (wild-type + BA.1) broadens cross-neutralizing activity relative to the BA.1 monovalent booster, cross-neutralization of BA.2 and descendants is more effective in mice boosted with a bivalent wild-type + BA.4/BA.5 vaccine. In naïve mice primary immunization with the bivalent wild-type + Omicron BA.4/BA.5 vaccine induces strong cross-neutralizing activity against Omicron VOCs and previous variants. These findings suggest that when administered as boosters, mono- and bivalent Omicron BA.4/BA.5-adapted vaccines enhance neutralization breadth, and that the bivalent version also has the potential to confer protection to individuals with no pre-existing immunity against SARS-CoV-2.

5.
Sci Immunol ; 7(77): eade2283, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2038230

ABSTRACT

BNT162b2-vaccinated individuals after Omicron BA.1 breakthrough infection have strong serum-neutralizing activity against Omicron BA.1, BA.2, and previous SARS-CoV-2 variants of concern (VOCs) yet less against the highly contagious Omicron sublineages BA.4 and BA.5 that have displaced previous variants. Because the latter sublineages are derived from Omicron BA.2, we characterized serum-neutralizing activity of COVID-19 mRNA vaccine triple-immunized individuals who experienced BA.2 breakthrough infection. We demonstrate that sera of these individuals have broadly neutralizing activity against previous VOCs and all tested Omicron sublineages, including BA.2-derived variants BA.2.12.1 and BA.4/BA.5. Furthermore, applying antibody depletion, we showed that neutralization of BA.2 and BA.4/BA.5 sublineages by BA.2 convalescent sera is driven to a considerable extent by antibodies targeting the N-terminal domain (NTD) of the spike glycoprotein. However, neutralization by Omicron BA.1 convalescent sera depends exclusively on antibodies targeting the receptor binding domain (RBD). These findings suggest that exposure to Omicron BA.2, in contrast to BA.1 spike glycoprotein, triggers substantial NTD-specific recall responses in vaccinated individuals and thereby enhances the neutralization of BA.4/BA.5 sublineages. Given the current epidemiology with a predominance of BA.2-derived sublineages such as BA.4/BA.5 and rapidly ongoing evolution, these findings helped to inform development of our Omicron BA.4/BA.5-adapted vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus , Antibodies, Viral , COVID-19 Vaccines , BNT162 Vaccine , COVID-19 Serotherapy
6.
EBioMedicine ; 82: 104158, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1991006

ABSTRACT

BACKGROUND: In recent months, Omicron variants of SARS-CoV-2 have become dominant in many regions of the world, and case numbers with Omicron subvariants BA.1 and BA.2 continue to increase. Due to numerous mutations in the spike protein, the efficacy of currently available vaccines, which are based on Wuhan-Hu 1 isolate of SARS-CoV-2, is reduced, leading to breakthrough infections. Efficacy of monoclonal antibody therapy is also likely impaired. METHODS: In our in vitro study using A549-AT cells constitutively expressing ACE2 and TMPRSS2, we determined and compared the neutralizing capacity of vaccine-elicited sera, convalescent sera and monoclonal antibodies against authentic SARS-CoV-2 Omicron BA.1 and BA.2 compared with Delta. FINDINGS: Almost no neutralisation of Omicron BA.1 and BA.2 was observed using sera from individuals vaccinated with two doses 6 months earlier, regardless of the type of vaccine taken. Shortly after the booster dose, most sera from triple BNT162b2-vaccinated individuals were able to neutralise both Omicron variants. In line with waning antibody levels three months after the booster, only weak residual neutralisation was observed for BA.1 (26%, n = 34, 0 median NT50) and BA.2 (44%, n = 34, 0 median NT50). In addition, BA.1 but not BA.2 was resistant to the neutralising monoclonal antibodies casirivimab/imdevimab, while BA.2 exhibited almost a complete evasion from the neutralisation induced by sotrovimab. INTERPRETATION: Both SARS-CoV-2 Omicron subvariants BA.1 and BA.2 escape antibody-mediated neutralisation elicited by vaccination, previous infection with SARS-CoV-2, and monoclonal antibodies. Waning immunity renders the majority of tested sera obtained three months after booster vaccination negative in BA.1 and BA.2 neutralisation. Omicron subvariant specific resistance to the monoclonal antibodies casirivimab/imdevimab and sotrovimab emphasizes the importance of genotype-surveillance and guided application. FUNDING: This study was supported in part by the Goethe-Corona-Fund of the Goethe University Frankfurt (M.W.) and the Federal Ministry of Education and Research (COVIDready; grant 02WRS1621C (M.W.).


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/metabolism , Antibodies, Viral , BNT162 Vaccine , COVID-19/therapy , Humans , Immunization, Passive , SARS-CoV-2 , COVID-19 Serotherapy
7.
Vaccines (Basel) ; 10(7)2022 Jul 21.
Article in English | MEDLINE | ID: covidwho-1957463

ABSTRACT

The emergence of SARS-CoV-2 Omicron subvariants prompted countries to call for accelerated booster vaccinations to limit disease and transmission. Here, we characterized correlates of protection over time after the second booster or after Omicron BA.1 infection comparing variants of concern (VOCs). Sera from subjects before and two and seven weeks after the second booster or after Omicron infection were examined for the level of Spike receptor-binding-domain (RBD)-specific antibodies. Furthermore, neutralizing antibodies (nABs) were characterized in in vitro neutralization assays comparing the variants of concern Alpha, Beta, Delta, and Omicron BA.1 and BA.2 against the ancestral strain B.1. Here, the second booster resulted in an increase in anti-RBD-IgG-antibodies, remaining nearly constant over time, accompanied by an increase in nABs against B.1 and the VOCs Alpha, Beta, Delta, and Omicron BA.1 and BA.2. However, compared to B.1, the neutralizing capacity against the Omicron subvariants remained low and was limited after the second booster vaccination. This indicates that antibody-mediated protection against infection with this VOC is unlikely, as evidenced by the fact that three individuals of our study cohort became infected with Omicron BA.1 after the second booster. T cell activation was measured by interferon-gamma release assays in a subgroup of subjects and was increased in all subjects tested after the second booster vaccination, correlating with the amount of Spike-specific antibodies. In subjects with Omicron BA.1 breakthrough infection, a significant increase in nABs to all VOCs studied was observed independently of booster vaccinations. Taken together, our data indicate that a second booster or Omicron BA.1 infection mediate a substantial increase in anti-Spike IgG antibodies; however, infection with Omicron BA.1 induced a stronger increase in neutralizing antibodies against the different VOCs.

8.
Front Aging ; 3: 883724, 2022.
Article in English | MEDLINE | ID: covidwho-1933925

ABSTRACT

The immune response is known to wane after vaccination with BNT162b2, but the role of age, morbidity and body composition is not well understood. We conducted a cross-sectional study in long-term care facilities (LTCFs) for the elderly. All study participants had completed two-dose vaccination with BNT162b2 five to 7 months before sample collection. In 298 residents (median age 86 years, range 75-101), anti-SARS-CoV-2 rector binding IgG antibody (anti-RBD-IgG) concentrations were low and inversely correlated with age (mean 51.60 BAU/ml). We compared the results to Health Care Workers (HCW) aged 18-70 years (n = 114, median age: 53 years), who had a higher mean anti-RBD-IgG concentration of 156.99 BAU/ml. Neutralization against the Delta variant was low in both groups (9.5% in LTCF residents and 31.6% in HCWs). The Charlson Comorbidity Index was inversely correlated with anti-RBD-IgG, but not the body mass index (BMI). A control group of 14 LTCF residents with known breakthrough infection had significant higher antibody concentrations (mean 3,199.65 BAU/ml), and 85.7% had detectable neutralization against the Delta variant. Our results demonstrate low but recoverable markers of immunity in LTCF residents five to 7 months after vaccination.

9.
Sci Immunol ; 7(75): eabq2427, 2022 09 16.
Article in English | MEDLINE | ID: covidwho-1874491

ABSTRACT

Omicron is the evolutionarily most distinct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC) to date. We report that Omicron BA.1 breakthrough infection in BNT162b2-vaccinated individuals resulted in strong neutralizing activity against Omicron BA.1, BA.2, and previous SARS-CoV-2 VOCs but not against the Omicron sublineages BA.4 and BA.5. BA.1 breakthrough infection induced a robust recall response, primarily expanding memory B (BMEM) cells against epitopes shared broadly among variants, rather than inducing BA.1-specific B cells. The vaccination-imprinted BMEM cell pool had sufficient plasticity to be remodeled by heterologous SARS-CoV-2 spike glycoprotein exposure. Whereas selective amplification of BMEM cells recognizing shared epitopes allows for effective neutralization of most variants that evade previously established immunity, susceptibility to escape by variants that acquire alterations at hitherto conserved sites may be heightened.


Subject(s)
COVID-19 , Viral Envelope Proteins , BNT162 Vaccine , Epitopes , Humans , Membrane Glycoproteins , Memory B Cells , Neutralization Tests , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL